Donald M. Waller, PhD

Professor of Botany and Environmental Studies

Conservation Ecology & Genetics, Plant Population Biology, Macroecology

UW-Department of Botany
430 Lincoln Drive
Madison, WI 53706
(608) 265-2191

dmwaller at

Curriculum Vitae


  • Bussey Post-doctoral Fellow (1978). The Grey Herbarium, Harvard University
  • Ph.D. (1978), Biology / Population Biology, Princeton University
  • A.B. (1973), Biology / Independent Scholar, Amherst College

Biographical Statement

Dr. Waller is an ecologist in the Department of Botany at the University of Wisconsin-Madison who teaches courses in ecology, evolution, and conservation biology. His research focuses on threats to plant and animal diversity, the impacts of deer browsing and invasive species, and the fate of small populations. His research in evolutionary biology and population genetics focuses on the evolution of mating systems and the genetic threat of inbreeding. He works with environmental organizations, land trusts, and state and federal resource agencies and scientists to inject science more effectively into forest and game management. He co-authored Wild Forests: Conservation Biology and Public Policy (Island Press 1994), co-edited The Vanishing Present: Shifts in Wisconsin’s lands, waters, and wildlife (Univ. of Chicago Press 2008), and has authored or co- authored over 100 journal articles. He is a Fellow of the American Association for the Advancement of Science, a former Editor-in-Chief of the journal Evolution and former President of the Society for the Study of Evolution.

Research Interests

Conservation biologists seek to discover mechanisms that threaten the persistence of native species and communities, and to use this knowledge to implement effective conservation strategies. We use the tools of plant demography, community ecology, and population genetics to investigate plant population and community dynamics.

On a coarse scale, we are interested in tracking how forest herb communities are changing over time and space. Using a unique historical data set collected by John Curtis and colleagues, we are tracking 50 yearshifts in plant community composition, structure, and diversity. We are particularly interested in patterns of community impoverishment and homogenization, and how the invasion of the region by exotic species is affecting native plant diversity and abundance.

On a fine scale, we study how demography and genetics influence the dynamics and persistence of rare species like Pedicularis furbishiae, Aconitum novaboracense, Cirsium pitcherii, and Polygonella basiramea. We are interested in how reproductive characters influence the abilities of rare plants to persist via repeated recolonization (metapopulation dynamics). We also use isozyme and DNA markers to assess population genetic structure in relation to population size and environmental conditions. Such information leads, in turn, to a better understanding of how the size and arrangement of habitat patches and patterns of disturbance affect long-term persistence.

Small and inbred populations face multiple hazards including the accumulation of deleterious mutations (increasing the genetic load) and the increased expression of these mutations upon inbreeding (inbreeding depression). While inbred populations may eliminate some of their load via selection against deleterious recessive alleles, such purging may be inefficient in small populations with a history of inbreeding. In lab experiments with the fast-cycling annual Brassica rapa, we are attempting to track how the genetic load shifts in response to population size and levels of inbreeding. Evaluating how much purging occurs in small inbred populations compliments existing theory and enhances our understanding of the short-term dynamics of mating system evolution and the genetic hazards faced by small populations.

We also study how high densities of white-tailed deer are affecting populations of sensitive herbaceous and woody species. Much of this work centers on Tsuga canadensis (an old-growth dominant in the region), Thuja occidentalis (an important community type), and Trillium grandiflorum (a charismatic woodland wildflower). We use the tools of demography and experimental exclosures to assess how seedling recruitment relates to local site conditions and deer densities. Such data are vital for making ecologically informed deer management decisions.